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The purpose of the tutorial is to get familiar with some basic knowledge and manipulation of microma-
gnetism. We will work around a Bloch domain wall, and a simple model of defect to explain pinning-related
coercivity.

Preamble. We will use the following shortcuts : ∂xθ for ∂θ/∂x and ∂nx θ for ∂
nθ/∂xn.

1 Framework of micromagnetism

Most of micromagnetic modeling relies on two hypotheses :
� The spatial variation of any physical quantity (magnetic moments etc.) is slow at the length scale
of inter-atomic distances. This allows one to describe physical systems in a continuous medium
approach and make use of the power of integral theory and di�erential equations.

� The resulting magnetization vector �eld (i.e. the density of magnetic moments per unit volume)
has a uniform and constant magnitude : |M(r)| ≡Ms, the spontaneous magnetization.

A major purpose of micromagnetism is to exhibit stable (or metastable) magnetization arrangements
under static conditions. These minimize globally (resp. locally) the total energy of the system.

In most situations the density of energy comprises at most four terms : magnetic anisotropy Ea =
Kfa(θ, ϕ), Zeeman energy EZ = −µ0MsH, self-dipolar energy Ed = −(1/2)µ0MsHd and exchange
energy, which continuous form we propose to link with microscopic quantities in this paragraph.

Let us consider exchange energy in a Heisenberg model : E = −
∑
i>j JSi.Sj , where the summation

concerns near(est) neighbors. J > 0 for ferromagnets.

In the simple framework of a one-dimensional crystal with atomic spacing a, show that the density
of exchange energy can be expressed as Eex = A(dxθ)2, assuming that the angle θ of the magnetization
vector has a slow variation between neighboring atomic sites. A is called the exchange constant, which
you will exhibit in terms of J and a.

In a three-dimensional body this energy is generalized to the expression :

Eex = A (∇m)2 . (1)

(∇m)2 is a shortcut for
∑
i

∑
j(∂xjmi)2 where mi are the components of the reduced magnetization

m = Ms/Ms.

2 Euler-Lagrange equation

We will seek to exhibit a magnetization con�guration that minimizes the energy density integrated
over the entire system : E =

∫
E(r)dr. The problem of �nding the minimum of a continuous quantity

integrated over space is a common problem solved through Euler-Lagrange equation, which we will deal
with in a textbook one-dimensional framework here.

Let us consider a microscopic quantity de�ned as F (θ,dxθ), where x is the spatial coordinate and θ
a quantity de�ned at each point. In the case of micromagnetism we will have :
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F (θ,dxθ) = A (dxθ)
2 + E(θ) (2)

E(θ) may contain anisotropy, dipolar and Zeeman terms. We de�ne the integrated quantity :

F =
∫ B

A

F (θ,dxθ) dx+ EA(θ) + EB(θ). (3)

A and B are the boundaries of the system, while EA(θ) and EB(θ) are surface energy terms.

Let us consider an in�nitesimal function variation δθ(x) of θ. Show that extrema of F are determined
by the following relationships :

∂θF − dx (∂dxθF ) = 0 (4)

dθEA − ∂dxθF |A = 0 (5)

dθEB + ∂dxθF |B = 0 (6)

Notice that equations Eq. (5) and Eq. (6) di�er in sign because a surface quantity should be de�ned
with respect to the unit vector normal to the surface, with a unique convention for the sense, such as
the outwards normal. Here the abscissa x is outwards for pointB however inwards at A. An alternative
microscopic explanation would be that for a given sign of dxθ the exchange torque exerted on a moment
to the right (at point B) is opposite to that exerted to the left (at point A), whereas the torque exerted
by a surface anisotropy energy solely depends on θ.

3 Micromagnetic Euler equation

Apply the above equations to the case of micromagnetism [Eq. (2)]. Starting from Eq. (4) exhibit a
di�erential equation linking E[θ(x)] with dxθ. Equations 5-6 are called Brown equations. EA(θ) and EB(θ)
may be surface magnetic anisotropy, for instance. Discuss the microscopic meaning of these equations.

Comment the special case of free boundary conditions (all bulk and surface energy terms vanish at
A and B), in terms of energy partition. Now on we switch back to the physics notation E for the total
energy, instead of F . Show that it can be expressed as :

E = 2
∫ θ(B)

θ(A)

√
AE(θ) dθ (7)

4 The Bloch domain wall

Let us assume the following free boundary conditions, mimicking two extended domains with opposite
magnetization separated by a domain wall whose pro�le we propose to derive here : θ(−∞) = 0 and
θ(+∞) = π. We will assume the simplest form of magnetic anisotropy, uniaxial of second order : E(θ) =
K sin2 θ.

Based on a dimensional analysis give approximate expressions for both the domain wall width δ and
the domain wall energy E . What are the SI units for E ? Discuss the form of these quantities in relation
with the meaning and e�ects of exchange and anisotropy.

By integrating the equations exhibited in the previous section, derive now the exact pro�le of the
domain wall
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Figure 1 � Bloch domain wall pro�le : the exact solution (red dots) versus the asymptotic pro�le (line).

θ(x) = 2 arctan[exp(x/∆)] (8)

and its energy E .

The most common way to de�ne the Bloch domain wall width δBl is by replacing the exact θ(x) by its
linear asymptotes (Figure 1). To shorten the expressions we often use the notation ∆ =

√
A/K, called

the Bloch parameter. Derive δBl as a function of ∆.

Let us stress two issues :
� As often in physics we have seen in this simple example that a dimensional analysis yields a good
insight into a micromagnetic situation. It is always worthwhile starting with such an analysis before
undertaking complex analytical or numerical approaches, which especially for the latter may hide
the physics at play.

� We have exhibited here a characteristic length scale in magnetism. Other length scales may occur,
depending on the energy terms in balance. The physics at play will often depend on the dimensions
of your system with respect to the length scales relevant in your case. Starting with such an analysis
is also wise.

5 An example of pinning

We remain in a one-dimensional framework. Starting from a homogeneous material let us model a
local defect in the form of a magnetically-soft (i.e. zero anisotropy) insertion of width δ`, located at
position x. In the case where δ` � ∆ discuss what modeling of the domain wall is reasonable to make.
Discuss the boundary conditions at the defect edges.

Show that the energy of the domain wall with the defect at location x reads :

E(x) = 4
√
AK

[
1− 1

4
δ`

∆
1

cosh2(x/∆)

]
(9)

Draw a schematic graph of E(x) and display the characteristic length or energy scales. An external
�eld is then applied at an angle cos θH with the easy axis direction in the domains. Assuming that the
pro�le of the domain wall (Eq. (8)) remains una�ected by the applied �eld (regime of weak pinning),
show that the propagation �eld of the domain wall over the defect reads :
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Hp =
Ha

cos θH
∆K
K

δ`

∆
1

3
√

3
. (10)

Notice :
� The model of the Bloch wall was named after D. Bloch who published this model in 1932[1].
� The 1/ cos θH dependence of coercivity is often considered as a signature a weak-pinning mechanism,
a law known as the Kondorski model[4].

� This model had been initially published in 1939 by Becker and Döring[2], and is summarized I in
the nice book of Skomsky Simple models of Magnetism[3].

� While coercivity requires a high anisotropy, the latter is not a su�cient condition to have a high
coercivity. To achieve this one must prevent magnetization reversal that can be initiated on defects
(structural or geometric) and switch the entire magnetization by propagation of a domain wall. In
a short-hand classi�cation one distinguishes coercivity made possible by hindering nucleation, or
hindering the propagation of domain walls. In reality both phenomena are often intermixed. Here
we modeled an example of pinning.

� Simple micromagnetic models of nucleation on defects[5] were the �rst to be exhibited to tentatively
explain the so-called Brown paradox, i.e. the fact that values of experimental values of coercivity in
most samples are smaller or much smaller than the values predicted by the ideal model of coherent
rotation[6].

Good references for micromagnetism are Hubert and Schäfer's book[7] (very large scope, many refe-
rences), Skomski's 2003 review [3] and later book[8] and Aharoni's book[9] (a bit more mathematical and
centered on the author's own contributions). For a super-light introduction to nanomagnetism you may
have a look at short personal reviews[10, 11, 11] or other authors' reviews[12, 13].
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